On the Congruence $2^{n-k} \equiv 1(\bmod n)$

By Mok-Kong Shen

Abstract

It is shown that there are infinitely many positive integers k such that the congruence $2^{n-k} \equiv 1(\bmod n)$ has infinitely many solutions n.

Lemma. If m satisfies the congruence

$$
\begin{equation*}
b^{m-s} \equiv 1 \quad(\bmod m) \tag{1}
\end{equation*}
$$

then $n=b^{m}-1$ satisfies the congruence

$$
\begin{equation*}
b^{n-t} \equiv 1 \quad(\bmod n) \tag{2}
\end{equation*}
$$

where $t=b^{s}-1$.
Proof. $n-t=b^{m}-b^{s}=b^{s}\left(b^{m-s}-1\right)$. Hence by (1) we have $m \mid(n-t)$, from which (2) follows.

Rotkiewicz [1] has recently proved that the congruence $2^{n-2} \equiv 1(\bmod n)$ has infinitely many solutions. Using the above lemma, which is a generalization of a result of Malo [2], the following extension is immediate:

Theorem. Each of the congruences

$$
\begin{equation*}
2^{n-k_{i}} \equiv 1 \quad(\bmod n) \quad(i=0,1,2, \ldots) \tag{3}
\end{equation*}
$$

where $k_{0}=2, k_{i+1}=2^{k_{i}}-1$, has infinitely many solutions n.
It remains an open question whether the congruence $2^{n-k} \equiv 1(\bmod n)$ has infinitely many solutions n for all positive integers k.

It may be noted that our lemma, while useful in proving the theorem, is quite impractical for numerical computations. For instance, using a digital computer, the author found the following solutions of $2^{n-2} \equiv 1(\bmod n)$ in the interval $\left[3,10^{6}\right]$, which Rotkiewicz asked for in [1]:

$$
\begin{aligned}
20737 & =89 \cdot 233, & 93527 & =7 \cdot 31 \cdot 431, \\
228727 & =127 \cdot 1801, & 373457 & =7 \cdot 31 \cdot 1721, \\
540857 & =31 \cdot 73 \cdot 239 . & &
\end{aligned}
$$

If one were to use the lemma to derive from them solutions of $2^{n-3} \equiv 1(\bmod n)$, one would have obtained numbers having 6043 digits or more, while the least nontrivial solution in this case is modestly $n=9$.

Postfach 340238
D-8000 Munich 34,
West Germany

1. A. Rotkiewicz, "On the congruence $2^{n-2} \equiv 1(\bmod n), "$ Math. Comp., v. 43, 1984, pp. 271-272.
2. L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1971, p. 93.
